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We first provide the raw sensitivity scores obtained in our experi-
ments, concept set temperature details followed by detailed com-
parison of models over existing IID evaluation metrics MSE, LMSE,
D-SSIM. We then provide the qualitative results over different tem-
peratures in concept sets and additional results on Δ𝑎 experiments.
We finally provide results on all of our four experimental settings,
ARAP[2] dataset and real-world concept sets datasets: MIW[6],
PS[1] along with MIT Intrinsics[3] in supplementary videos.

1 RAW SENSITIVITY SCORES
We report the raw sensitivity scores of experiments in Table 4. Note:
the range of scores is between 0-1, as mentioned in the paper. We
observe that these scores are high for both R and S by models in
some experiments. The concept captured by CAV vectors is depen-
dent on the model’s activations and some models might be affected
by that concept for both R and S and hence the raw sensitivity
scores by themselves do not provide much information about the
importance given by the model for 𝑅 vs 𝑆 . Note: TCAV does analy-
sis in classification problems and thus calculates sensitivity over
classifiers while we are using it in a decomposition(reconstruction
problem) for a multi-branch network. Hence the sensitivity scores
are standalone for classifier setting as by Kim et al. [5] but not for
our problem of comparing outputs of multi-branch network. We
are interested in the R vs. S sensitivity scores, hence the ratios of
scores matter for us and not the raw scores.

2 CONCEPT SETS TEMPERATURES
We experiment with three temperatures for concept sets which
are shown in Figure 1. These temperatures have been inspired
from temperature settings of vidit dataset [4]. We report qualitative
results over our three temperature settings in Figure 2 where𝐴𝑖 𝐼 𝑗𝑇𝑘
represent a scene having albedo i, illumination j and temperature k.
k = 0 for T = 2500, k = 1 for T = 4500 and k = 2 for T = 6500.

We observe that all three models confuse temperature with
albedo. We also verify our𝐶𝑆𝑀𝑆 and 𝐶𝑆𝑀𝑅 scores (given in paper)
for different temperatures from qualitative results. Overall, for Δ𝑎
USI3D>IIWW>CGIID, for Δ𝑖 CGIID>IIWW>USI3D. For T = 2500
and 4500 the trend according to 𝐶𝑆𝑀𝑆 is USI3D>IIWW»CGIID
while T = 6500 has trend as IIWW>USI3D>CGIID.

3 METRICS COMPARISON
We report the D-SSIM, LMSE and MSE metrics over MIT Intrinsics
dataset[3], ARAP[2] and our newly introduced Δ𝑎 and Δ𝑖 concept
sets in Table 1, Table 2 and Table 3 respectively. Each of these

Model
MSE↓ LMSE↓ DSSIM↓

R S R S R S
IIWW 0.0147 0.0135 0.0341 0.0253 0.1398 0.1266
USI3D 0.0156 0.0102 0.064 0.0474 0.1158 0.131
CGIID 0.0167 0.0127 0.0319 0.0211 0.1287 0.1376

Table 1: Pixel-wise comparison metrics on MIT Intrinsics
datataset[3]

Model
MSE↓ LMSE↓ D-SSIM↓

R S R S R S

IIWW 0.056 0.033 0.066 0.054 0.448 0.522
USI3D 0.095 0.021 0.072 0.052 0.486 0.347
CGIID 0.073 0.037 0.064 0.054 0.512 0.498

Table 2: Pixel-wise comparisonmetrics on 42 scenes of ARAP
dataset[2] used as test set in paper.

Figure 1: Illumination temperatures: We use three tempera-
tures for illumination which are 2500, 4500, 6500 as shown in from
left to right.

metrics measures different aspects of closeness to Ground Truth.
MSE measures the average squared pixel-wise difference between
predicted and GT. LMSE is local-MSE andmeasuresMSE patch-wise,
while D-SSIM gives structural dis-similarity between predicted
and GT images. MSE measures absolute error, not taking spatial
information of pixels into account, whereas LMSE and D-SSIM
consider spatially close pixels separately. These metrics are not
designed to measure R vs. S disentanglement as pointed in the
paper. According to these metrics Table 2, USI3D has best 𝑆 while
IIWWhas best𝑅 onARAP dataset[2]. (LMSE𝑅 for CGIID and IIWW
are comparable). On MIT Intrinsics[3] all models have comparable
performance Table 1 and there is no common trend of performance
established as such.
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Scene type Albedo type Model
Δ𝑎 concept set Δ𝑖 concept set

R S R S

MSE LMSE D-SSIM MSE LMSE D-SSIM MSE LMSE D-SSIM MSE LMSE D-SSIM

Simple

RGB
IIWW 0.116 0.027 0.277 0.053 0.006 0.409 0.145 0.031 0.339 0.021 0.006 0.415
USI3D 0.06 0.025 0.213 0.041 0.001 0.234 0.067 0.021 0.23 0.035 0.004 0.198
CGIID 0.134 0.033 0.344 0.014 0.002 0.265 0.183 0.04 0.426 0.012 0.005 0.23

Textured
IIWW 0.057 0.012 0.208 0.075 0.005 0.348 0.076 0.015 0.337 0.071 0.004 0.355
USI3D 0.026 0.008 0.138 0.054 0.005 0.326 0.041 0.008 0.284 0.045 0.007 0.31
CGIID 0.062 0.016 0.255 0.018 0.002 0.287 0.08 0.019 0.359 0.016 0.005 0.269

Complex

RGB
IIWW 0.07 0.014 0.246 0.057 0.006 0.382 0.09 0.016 0.306 0.059 0.006 0.398
USI3D 0.024 0.007 0.19 0.039 0.003 0.268 0.034 0.006 0.228 0.035 0.004 0.23
CGIID 0.082 0.019 0.294 0.022 0.003 0.308 0.128 0.027 0.396 0.02 0.005 0.272

Textured
IIWW 0.044 0.014 0.25 0.064 0.006 0.383 0.048 0.014 0.322 0.112 0.005 0.414
USI3D 0.019 0.009 0.184 0.062 0.007 0.4 0.031 0.01 0.31 0.071 0.01 0.449
CGIID 0.046 0.014 0.284 0.02 0.005 0.372 0.05 0.013 0.335 0.024 0.007 0.421

Table 3: Pixel-wise comparison metrics on scenes of our concept sets: USI3D does best in general in terms of the above metrics.

Temp Model

Δ𝑎 Δ𝑖

Textured RGB Textured RGB

Simple Complex Simple Complex Simple Complex Simple Complex

𝑅Δ𝑎 𝑆Δ𝑎 𝑅Δ𝑎 𝑆Δ𝑎 𝑅Δ𝑎 𝑆Δ𝑎 𝑅Δ𝑎 𝑆Δ𝑎 𝑅Δ𝑖 𝑆Δ𝑖 𝑅Δ𝑖 𝑆Δ𝑖 𝑅Δ𝑖 𝑆Δ𝑖 𝑅Δ𝑖 𝑆Δ𝑖

2500
IIWW 0.34 0.196 0.309 0.278 0.336 0.376 0.338 0.237 0.326 0.333 0.307 0.337 0.349 0.347 0.346 0.262
USI3D 0.331 0.08 0.311 0.111 0.337 0.082 0.296 0.112 0.37 0.166 0.36 0.146 0.375 0.103 0.285 0.184
CGIID 0.53 0.588 0.71 0.515 0.347 0.626 0.613 0.583 0.518 0.604 0.422 0.596 0.419 0.637 0.353 0.586

4500
IIWW 0.385 0.193 0.366 0.237 0.385 0.403 0.383 0.204 0.379 0.305 0.335 0.328 0.387 0.343 0.389 0.3
USI3D 0.294 0.125 0.335 0.149 0.267 0.099 0.271 0.176 0.325 0.21 0.352 0.175 0.301 0.116 0.304 0.196
CGIID 0.421 0.565 0.671 0.503 0.445 0.63 0.532 0.591 0.447 0.602 0.468 0.6 0.346 0.643 0.333 0.62

6500
IIWW 0.395 0.158 0.378 0.303 0.386 0.4 0.386 0.196 0.384 0.293 0.34 0.299 0.387 0.36 0.391 0.271
USI3D 0.263 0.241 0.275 0.214 0.264 0.128 0.277 0.221 0.257 0.242 0.323 0.239 0.285 0.146 0.315 0.229
CGIID 0.365 0.597 0.648 0.507 0.353 0.633 0.487 0.582 0.375 0.609 0.468 0.606 0.3 0.644 0.327 0.61

Avg
IIWW 0.373 0.182 0.351 0.273 0.369 0.393 0.369 0.213 0.363 0.311 0.327 0.322 0.374 0.35 0.375 0.278
USI3D 0.296 0.148 0.307 0.158 0.289 0.103 0.282 0.169 0.318 0.206 0.345 0.187 0.321 0.122 0.301 0.203
CGIID 0.439 0.583 0.676 0.509 0.382 0.63 0.544 0.585 0.448 0.605 0.453 0.601 0.355 0.641 0.338 0.605

Table 4: TCAV sensitivity scores for concepts albedo change and illumination change in our 4 experimental settings.

4 ADDITIONAL RESULTS
We provide additional results on Δ𝑎 concept for each of our 4
experimental settings for T = 6500, 4500 and 2500 in Figures 3, 4
and 5 respectively.

Please refer Supplementary video for more results.
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Figure 2: Illustrative qualitative results for albedo and illumination variation experiments in different temperatures. 𝐴𝑖 𝐼 𝑗𝑇𝑘
represent scene having albedo i, illumination j and temperature k. For albedo variation 𝐴0 −→ 𝐴1, in temperatures 𝑇0 and 𝑇1 rows first to
second 𝐴0𝐼0𝑇0 −→ 𝐴1𝐼0𝑇0 and fourth to fifth 𝐴0𝐼0𝑇1 −→ 𝐴1𝐼0𝑇1, USI3D has least 𝑆 changes (green) followed by IIWW and CGIID (red) while
for temperature 𝑇2 (𝐴0𝐼0𝑇2 −→ 𝐴1𝐼0𝑇2, IIWW has least 𝑆 changes (green) followed by USI3D while CGIID has most 𝑆 changes (red). For
illumination variation 𝐼0 −→ 𝐼1, the same trend CGIID>IIWW>USI3D is observed for all the temperatures. CGIID has least 𝑅 changes for Δ𝑖
(teel) followed by IIWW and USI3D which has most 𝑅 changes (magenta). Further, CGIID has lesser illumination leakage in 𝑅 for all three
rows while IIWW and USI3D have clear illumination leakages (shadows) in R.
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(a) Input (b) IIWW 𝑅̂ (c) IIWW 𝑆 (d) USI3D 𝑅̂ (e) USI3D 𝑅̂ (f) USI3D 𝑆 (g) CGIID 𝑆 (h) GT R (i) GT S

Figure 3: Albedo change experiments for T = 6500: Overall performance order is: USI3D=IIWW»CGIID. Rows 1 and 2 are scenes in
Textured-Complex setting: USI3D has least 𝑆𝑝𝑟𝑒𝑑 variations followed by IIWW and CGIID which has significant global changes (shading
intensity varions from light to dark). Also, CGIID’s 𝑅𝑝𝑟𝑒𝑑 for second row is very smooth and most texture information is leaked in 𝑆𝑝𝑟𝑒𝑑 .
Third and fourth rows have RGB-complex Δ𝑎 : IIWW followed by USI3D have less changes in 𝑆𝑝𝑟𝑒𝑑 compared to CGIID which observes
global changes. Fifth and sixth rows are Textured-Simple Δ𝑎 : IIWW observes least changes in 𝑆𝑝𝑟𝑒𝑑 over teapot followed by USI3D. CGIID
and IIWW have significant 𝑆𝑝𝑟𝑒𝑑 variations in background. For second last and last rows which is RGB-Simple Δ𝑎 setting: USI3D has a
nearly constant 𝑆 , while IIWW has siginificant variations in background(at top) where intensity changes becomes darker and CGIID has
shading intensity variations over teapot).
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(a) Input (b) IIWW 𝑅̂ (c) IIWW 𝑆 (d) USI3D 𝑅̂ (e) USI3D 𝑆 (f) CGIID 𝑅̂ (g) CGIID 𝑆 (h) GT R (i) GT R

Figure 4: Albedo change experiments for T = 4500 Order of performance: USI3D> IIWW> CGIID. Note: Since shading is constant we
represent shading for rows 1, 2, 3, 4 in row 1 and rows 5, 6, 7, 8 in row 5.
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(a) Input (b) IIWW 𝑅̂ (c) IIWW 𝑆 (d) USI3D 𝑅̂ (e) USI3D 𝑆 (f) CGIID 𝑅̂ (g) CGIID 𝑆 (h) GT R (i) GT R

Figure 5: Albedo change experiments for T = 2500 Order of performance: USI3D> IIWW> CGIID. Note: Since shading is constant we
represent shading for rows 1, 2, 3, 4 in row 1 and rows 5, 6, 7, 8 in row 5. Note: USI3D has sharper textures in S, hence in texutured setting,
textures might seem a bit change, but its light intensity is constant compared to other models which have both texture leakage and light
intensity changes. IIWW has smoother S leading to lesser texture leakage but has more light intensity changes(as seen from rows 5 and 6)
while CGIID has both sharp texture leakages and light intensity changes. Hence USI3D gets a good 𝐶𝑆𝑀𝑆 overall.
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