Interpreting Intrinsic Image Decomposition using Concept Activations

Avani Gupta, Saurabh Saini, P J Narayanan

CVIT, KCIS, IIIT Hyderabad, Hyderabad, India

Abstract

- Evaluation of <u>ill-posed problems</u> like Intrinsic Image Decomposition (IID) is challenging.
- IID is <u>under-constrained</u>: more output parameters (R, S) than inputs (I).
- IID comparison with one specific decomposition in the ground-truth images used by current IID evaluation metrics like LMSE, MSE, DSSIM, WHDR, SAW AP%, etc., is inadequate.
- Measuring **R-S disentanglement** is a better way to evaluate.

ICVGIP 2022

Inspired by <u>ML interpretability</u> methods, we propose **Concept Sensitivity** Metrics (CSM) that directly measure disentanglement using sensitivity to concepts of R-illumination invariance and S-albedo invariance.

Key Contributions

- 1. A novel method for using ML interpretability algorithms like TCAV to measure disentanglement.
- 2. A novel IID performance evaluation metric: Concept Sensitivity Metric (CSM) and <u>benchmarked</u> results on three state-of-the-art IID solutions.
- 3. A new configurable dataset of images and corresponding generation scripts with controlled illumination and albedo variation.

IID evaluation

Existing IID evaluation is limited as shown and doesnot measure disentanglement.

Disentanglement Quality Assessment via our proposed CSM scores.

Performance order over Synthetic Concept Sets Albedo variation $(A_0I_0 \rightarrow A_1I_0)$: USI3D > IIWW > CGIID Illumination variation $(A_1I_0 \rightarrow A_1I_0)$: CGIID > IIWW > USI3D

Evaluation by interpretation

Concept Sensitivity

Ideal case of complete *R*-*S* disentanglement, R and S **sensitivity** for

- Δa : albedo change experiment
- Δi : illumination change experiment

	Synthetic Concept Set		RW Concept Sets		
Model	CSM _s	CSM _R	CSM _R	WHDR	SAW
IIWW	1.524	0.878	0.991	20.3	91.87
USI3D	2.139	0.552	0.784	18.69	78.69
CGIID	0.909	1.544	5.431	14.8	97.93

CSM_S : USI3D > IIWW > CGIID, CSM_R : CGIID > IIWW > USI3D

Img	Model	R:MSE, LMSE, D-SSIM, LPIPS	S: MSE, LMSE, D-SSIM, LPIPS
۸J	IIWW	0.025, 0.006, 0.254, 0.336	0.021, 0.004, 0.365, 0.429
	USI3D	0.013, 0.006, 0.188, 0.185	0.058, 0.006, 0.431, 0.396
	CGIID	0.021, 0.006, 0.280, 0.364	0.020, 0.003, 0.421, 0.396
A I	IIWW	0.035, 0.011, 0.261,0.362	0.041, 0.011, 0.456, 0.439
	USI3D	0.014, 0.006, 0.162, 0.153	0.070, 0.010, 0.495, 0.406
	CGIID	0.062, 0.006, 0.327, 0.388	0.041, 0.014, 0.559, 0.443

Exemplar image comparison: Metrics fail to capture disentanglement quality.

$R_{\Delta a}$, $S_{\Delta i} = 1$ and $R_{\Delta i}$, $S_{\Delta i} = 0$.

Concept Sensitivity Metric: CSM

• Quantitative measures proposed for quality of R vs. S disentanglement. • Two metrics:

Ŝ albedo invariance **R** illumination invariance

(c) IIWW \hat{S} (e) USI3D *Â* (g) CGIID \hat{S} (a) Input **(b) IIWW** *R* (d) USI3D *R* (f) CGIID Â **Real world concept set results**: Our method is **consistent** in both real world and synthetic domains while Other metrics have a domain shift.

Project Page: https://avani17101.github.io/Concept-Sensitivity-Metric/

