Concept Distillation: Leveraging Human-Centered Explanations for Model Improvement

Avani Gupta^{1,2}

Saurabh Saini²

P J Narayanan²

Outline

- Humans think in abstract concepts like color, texture, shapes, etc.
- Human-centered concepts are used by Interpretability methods.
- Can they be used to debias a trained model?
- We introduce a concept loss to ante-hoc finetune a model to make it more sensitive or less sensitive to a concept.
- We also extend concepts to other layers of a model using prototypes.
- We introduce concept distillation to get more informative concepts

CAVs [1] are normal to decision boundary separating concepts.

Concept Sensitivity: Nudge a model's gradients towards CAV direction and check the effect on final layer's logit (or loss) prediction to get Sensitivity of trained model for layer I and class sample k.

Key Contributions

Extend CAVs: From post-hoc explanations to ante-hoc model improvement without altering base architecture.

Novel Concept loss: Concept sensitive training of DNNs.

Extend CAV sensitivity calculation to any layer and enhance it by making it more global by employing prototypes.

Concept distillation: Exploit the inherent knowledge of large pretrained models as a teacher in concept definition.

Benchmark results: On standard biased MNIST datasets and introduce a challenging TextureMNIST dataset. Application on severe biases like age.

Application beyond classification: Tackle multi-branch Intrinsic Image Decomposition problem (IID), introducing concepts as priors.

Proposed Concept Loss

Proposed novel concept loss for concept sensitive finetuning of DNNs. We control the above component to control concept sensitivity.

$$L_C(\boldsymbol{x}) = |\cos(\nabla L_p(f_l(\boldsymbol{x})), \boldsymbol{v}_C^l)|.$$

For C desensitization: make loss gradient perpendicular to cav (align along decision boundary) For sensitization: make it parallel to cav (align along cav direction) use $1 - L_c$ Final loss = $L_c + L_c$ (conventional ground truth loss)

¹M42, UAE ²CVIT, KCIS, IIIT Hyderabad

Concept Sensitive Training Choose layer I, Concepts C, learn CAVs. Concept loss L_c to enhance/diminish/add concepts to model. 3. Finetune M with L_{c} with original loss L_{c} L_o +λL_C Final loss Concept loss CAV Learne

Proto-types for Intermediate Layer Sensitivity

- Kim et al. [1] only calculate sensitivity of final layer wrt any other layer.
- Concepts can exist in any layer.
- We need ANY layer sensitivity wrt intermediate layer outputs. How to calculate intermediate layer sensitivity?
- Class Proto-types as Pseudo-GT labels!
- K-means on class sample activations to get K cluster centers (proto-types). Calculate proto-type loss as avg L2 distance from K class centers. Use it instead of final layer loss for intermediate layer sensitivity.

Project Page: https://avani17101.github.io/Concept-Distillation/

Dataset ColorM DecoyM Texture BFFHQ

Data

ColorM Decoy Texture

Datas BFFH

Test D Invert Rando Rando Pixel-h

References

Neurips, 21.

NEURAL INFORMATION PROCESSING SYSTEMS

HYDERABAD

Applications in Debiasing

ner?	Prototype?	Accuracy		
	×	9.96		
	1	26.97		
	×	30.94		
	1	50.93		

	Concept	Base Model	Ours
NIST	Color	0.52	0.21
NIST	Spatial patches	0.57	0.45
MNIST	Textures	0.68	0.43
	Age	0.78	0.13

Reduced TCAV scores of bias concept.

aset	Bias	Base	CDEP [55]	RRR [56]	EG[17]	Ours w/o Teacher	Ours	Ours+L
INIST	Digit color	0.1	31.0	0.1	10.0	26.97	41.83	50.93±1.42
MNIST	Spatial patches	52.84	97.2	99.0	97.8	87.49	98.58	98.98 ± 0.20
MNIST	Digit textures	11.23	10.18	11.35	10.43	38.72	48.82	56.57±0.79

Improvements over Zero-shot Interpretability based baselines.

et Bias		Base	EnD [69]	DFA [43]	Ours w/o Teacher	Ours	
Q	Age	$56.87_{\pm 2.69}$	$56.87_{\pm 1.42}$	$61.27_{\pm 3.26}$	59.4	63±0.79	

Few Shot baselines comparison: Our method not limited to concept sets but can work with bias-conflicting samples too

	C	olorMNIST Trai	ined	TextureMNIST Trained			
ataset	Base	CDEP [55]	Ours+L	Base	CDEP [55]	Ours+L	
color	0.00	23.38	50.93	11.35	10.18	45.36	
m color	16.63	37.40	46.62	11.35	10.18	64.96	
m texture	15.76	28.66	32.30	11.35	10.18	56.57	
nard	15.87	33.11	38.88	11.35	10.18	61.29	

Generalizability across different test-sets.

Prior Knowledge Induction

Se Se - M	Model	MSE R↓	MSE S \downarrow	SSIM R ↑	SSIM S↑
	CGIID [47] CGIID++ Ours (R only) Ours (R & S)	0.066 0.080 0.052 0.059	0.027 0.032 0.027 0.028	0.536 0.520 0.54 0.538	0.581 0.552 0.581 0.586

[1] B. Kim, M. Wattenberg, J. Gilmer, C. Cai, J. Wexler, F. Viegas, et al. Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (tcav). ICML, 2018

[17] G. Erion, J. D. Janizek, P. Sturmfels, S. M. Lundberg, and S.-I. Lee. Improving performance of deep learning models with axiomatic attribution priors and expected gradients. Nature machine intelligence, 3 (7):620–631, 2021 [43] J. Lee, E. Kim, J. Lee, J. Lee, and J. Choo. Learning debiased representation via disentangled feature augmentation

[47] Z. Li and N. Snavely. Cgintrinsics: Better intrinsic image decomposition through physically-based rendering. ECCV

[55] L. Rieger, C. Singh, W. Murdoch, and B. Yu. Interpretations are useful: penalizing explanations to align neura networks with prior knowledge. PMLR, 2020.

[56] d F. Doshi-Velez. Right for the right reasons: Training differentiable models by constraining their explanations.

