Concept Distillation: Leveraging Human-Centered Explanations

for Model Improvement
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e Humans think in abstract concepts like color, texture, shapes, etc.

e Human-centered concepts are used by Interpretability methods.

e C(Can they be used to debias a trained model?

e We introduce a concept loss to ante-hoc finetune a model to make it more

sensitive or less sensitive to a concept.
e We also extend concepts to other layers of a model using prototypes.

e We introduce concept distillation to get more informative concepts
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Concept Distillation

Concept sensitive finetuning of DNNs
enhance, diminish or add concept

wWhat we propose

Concept Sensitivity
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CAVs [1] are normal to decision boundary separating concepts.

Concept Sensitivity: Nudge a model's gradients towards CAV direction and
check the effect on final layer's logit (or loss) prediction to get Sensitivity of
trained model for layer | and class sample k.

Key Contributions

Extend CAVs: From post-hoc explanations to ante-hoc model improvement
without altering base architecture.

Novel Concept loss: Concept sensitive training of DNNs.

Extend CAV sensitivity calculation to any layer and enhance it by making it
more global by employing prototypes.

Concept distillation: Exploit the inherent knowledge of large pretrained
models as a teacher in concept definition.

Benchmark results: On standard biased MNIST datasets and introduce a
challenging TextureMNIST dataset. Application on severe biases like age.
Application beyond classification: Tackle multi-branch Intrinsic Image
Decomposition problem (lID), introducing concepts as priors.

Proposed Concept Loss

Proposed novel concept loss for concept sensitive finetuning of DNNSs.
We control the above component to control concept sensitivity.

Lo(@) = | cos(VLy (fi(2)) ,ve)|

For C desensitization: make loss gradient perpendicular to cav (align along
decision boundary) For sensitization: make it parallel to cav (align along cav
direction) use 1 — L_Finalloss =L_+ L_(conventional ground truth loss)
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Concept Sensitive Training

1. Choose layer |, Concepts C, learn CAVSs.
2. Concept loss L to enhance/diminish/add concepts to model.
3. Finetune M with L. with original loss L |
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Proto-types for Intermediate Layer Sensitivity

e Kim et al. [1] only calculate sensitivity of final layer wrt any other layer.

e Concepts can exist in any layer.

e \We need ANY layer sensitivity wrt intermediate layer outputs. How to
calculate intermediate layer sensitivity?

e C(Class Proto-types as Pseudo-GT labels!

e K-means on class sample activations to get K cluster centers
(proto-types). Calculate proto-type loss as avg L2 distance from K class

centers. Use it instead of final layer loss for mtermedlate Iayer sensitivity.
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Concepts from Teacher
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Concept Sensitive Finetuning by our proposed concept loss.

Project Page: https://lavani17101.github.io/Concept-Distilllation/
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Applications in Debiasing

Train Test Concepts

MNIST
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Different Components of Our Method.
Random
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Dataset Concept Base Model|Ours| Decoy 6 (0
ColorMNIST | 052 (021 MNIST

ColorMNIST |[Color
'DecoyMNIST |[Spatial patches|  0.57 0.45
TextureMNIST | Textures 0.68 0.43
‘LBFFHQ Age ‘ 0.78 0 13

e

Reduced TCAV scores of bias concept.

Dataset Bias Base CDEP|[55] RRR[56] EG|[17] Ours w/o Teacher Ours Ours+L

ColorMNIST Digit color 0.1 31.0 0.1 10.0 26.97 41.83 50.93+1.42
DecoyMNIST Spatial patches 52.84  97.2 99.0 97.8 87.49 08.58 98.98+0.20
TextureMNIST Digit textures 11.23  10.18 11.35 10.43 38.72 48.82 56.57+0.79

Improvements over Zero-shot Interpretability based baselines.

Dataset Bias Base EnD [69] DFA [43]  Ours w/o Teacher Ours
BFFHQ Age 56.874269 056.874+1.42 61.2743.26 594 6310.79

Few Shot baselines comparison: Our method not limited to concept sets but can work with bias-conflicting samples too.

ColorMNIST Trained TextureMNIST Trained
Test Dataset Base CDEP|55] Ours+L Base CDEP|55] Ours+L
Invert color 0.00 23.38 50.93 11.35 10.18 45.36
Random color 16.63 37.40 46.62 11.35 10.18 64.96
Random texture 15.76 28.66 32.30 11.35 10.18 56.57
Pixel-hard 15.87 33.11 38.88 11.35 10.18 61.29

Generalizability across different test-sets.

Prior Knowledge Induction

11D Network
‘ m Model MSER| MSES | SSIMR SSIMGT
. i K CGID[47] 0066 0027 0536  0.581
. \ CGIID++ 0080 0032 0520 0552

Ours (R only)  0.052 0.027 0.54 0.581
Ours (R&S)  0.059 0.028 0.538 0.586
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